Tri :
Date de référencement
Editeur
Auteur
Titre
|
Robert Young - Quantitative geometry and filling problems (Part 5)
[Ressource pédagogique]
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces...
Référencé le :
20-09-2016
|
|
Robert Young - Quantitative geometry and filling problems (Part 4)
[Ressource pédagogique]
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces...
Référencé le :
20-09-2016
|
|
Robert Young - Quantitative geometry and filling problems (Part 3)
[Ressource pédagogique]
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces...
Référencé le :
20-09-2016
|
|
Robert Young - Quantitative geometry and filling problems (Part 2)
[Ressource pédagogique]
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces...
Référencé le :
20-09-2016
|
|
Robert Young - Quantitative geometry and filling problems (Part 1)
[Ressource pédagogique]
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces...
Référencé le :
20-09-2016
|
|
Robert Young - Quantitative rectifiability and differentiation in the Heisenberg group
[Ressource pédagogique]
Date de publication :
20160701 |
Auteur(s) :
YOUNG Robert |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
(joint work with Assaf Naor) The Heisenberg group $mathbb{H}$ is a sub-Riemannian manifold that is unusually difficult to embed in $mathbb{R}^n$. Cheeger and Kleiner introduced a new notion of differentiation that they used to show that it does not embed nicely into $L_1$. This notion is based on surfaces in $mathbb{H}$, and in this talk, we will describe new techniques that let us quantify the "r...
Référencé le :
20-09-2016
|
|
Burkhard Wilking - Manifolds with almost nonnegative curvature operator
[Ressource pédagogique]
Date de publication :
20160629 |
Auteur(s) :
WILKING Burkhard |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
We show that n-manifolds with a lower volume bound v and upper diameter bound D whose curvature operator is bounded below by $-varepsilon(n,v,D)$ also admit metrics with nonnegative curvature operator. The proof relies on heat kernel estimates for the Ricci flow and shows that various smoothing properties of the Ricci flow remain valid if an upper curvature bound is replaced by a lower volume boun...
Référencé le :
20-09-2016
|
|
Genevieve Walsh - Boundaries of Kleinian groups
[Ressource pédagogique]
Date de publication :
20160628 |
Auteur(s) :
WALSH Genevieve |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
We study the problem of classifying Kleinian groups via the topology of their limit sets. In particular, we are interested in one-ended convex-cocompact Kleinian groups where each piece in the JSJ decomposition is a free group, and we describe interesting examples in this situation. In certain cases we show that the type of Kleinian group is determined by the topology of its group boundary. We c...
Référencé le :
20-09-2016
|
|
Jeff Viaclovsky - Deformation theory of scalar-flat Kahler ALE surfaces
[Ressource pédagogique]
Date de publication :
20160630 |
Auteur(s) :
VIACLOVSKY Jeff |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
I will discuss a Kuranishi-type theorem for deformations of complex structure on ALE Kahler surfaces, which will be used to prove that for any scalar-flat Kahler ALE surface, all small deformations of complex structure also admit scalar-flat Kahler ALE metrics. A local moduli space of scalar-flat Kahler ALE metrics can then be constructed, which is universal up to small diffeomorphisms. I will als...
Référencé le :
20-09-2016
|
|
Alexandre Sukhov - J-complex curves: some applications (Part1)
[Ressource pédagogique]
Date de publication :
20120625 |
Auteur(s) :
Sukhov Alexandre |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
We
will focus in our lectures on the following : 1. J-complex discs in
almost complex manifolds : general properties. Linearization and
compactness. Gromov’s method : the Fredholm alternative for the d-bar
operator. Attaching a complex disc to a Lagrangian manifold.
Application : exotic symplectic structures. Hulls of totally real
manifolds : Alexander’s theorem. 2. Real surfaces in (almost)...
Référencé le :
20-09-2016
|
|