Recherche simple :
Ressources pédagogiques
Ressources diverses
Thèses
Toutes les ressources
Ressources pédagogiques > Accès par auteurs
Nouveautés
Recherche avancée
Sciences et techniques
Sciences de la terre
Chimie
Sciences de la vie
Physique
Toutes les thématiques
Ressources pédagogiques -> Auteur(s)
LUO FENG
6
ressources ont été trouvées.
Voici les résultats
1
à
6
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
Attention : l'accès aux ressources peut être restreint, soit pour des raisons juridiques, soit par la volonté de l'auteur.
Tri :
Date de référencement
Editeur
Auteur
Titre
Feng Luo - Discrete conformal geometry of polyhedral surfaces and its convergence
[Ressource pédagogique]
Date de publication :
20160629 |
Auteur(s) :
LUO Feng |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
Our recent joint work with D. Gu established a discrete version of the uniformization theorem for compact polyhedral surfaces. In this talk, we prove that discrete uniformizaton maps converge to conformal maps when the triangulations are sufficiently fine chosen. We will also discuss the relationship between the discrete uniformization theorem and convex polyhedral surfaces in the hyperbolic 3...
Référencé le :
20-09-2016
Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 5)
[Ressource pédagogique]
Date de publication :
20160624 |
Auteur(s) :
LUO Feng |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics. - The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof - Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan - Finite dimens...
Référencé le :
20-09-2016
Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 4)
[Ressource pédagogique]
Date de publication :
20160623 |
Auteur(s) :
LUO Feng |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics. - The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof - Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan - Finite dimens...
Référencé le :
20-09-2016
Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 3)
[Ressource pédagogique]
Date de publication :
20160622 |
Auteur(s) :
LUO Feng |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics. - The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof - Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan - Finite dimens...
Référencé le :
20-09-2016
Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 2)
[Ressource pédagogique]
Date de publication :
20160622 |
Auteur(s) :
LUO Feng |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics. - The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof - Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan - Finite dimens...
Référencé le :
20-09-2016
Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 1)
[Ressource pédagogique]
Date de publication :
20160621 |
Auteur(s) :
LUO Feng |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics. - The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof - Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan - Finite dimens...
Référencé le :
20-09-2016
|<
<< Page précédente
1
Page suivante >>
>|
5
10
15
20
25
30
35
40
documents par page
© 2006-2010 ORI-OAI