|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Attention : l'accès aux ressources peut être restreint, soit pour des raisons juridiques, soit par la volonté de l'auteur.
Tri :
Date de référencement
Editeur
Auteur
Titre
|
Gilles Courtois - The Margulis lemma, old and new (Part 5)
[Ressource pédagogique]
Date de publication :
20160623 |
Auteur(s) :
COURTOIS Gilles |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal...
Référencé le :
20-09-2016
|
|
Gilles Courtois - The Margulis lemma, old and new (Part 4)
[Ressource pédagogique]
Date de publication :
20160622 |
Auteur(s) :
COURTOIS Gilles |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal...
Référencé le :
20-09-2016
|
|
Gilles Courtois - The Margulis lemma, old and new (Part 3)
[Ressource pédagogique]
Date de publication :
20160621 |
Auteur(s) :
COURTOIS Gilles |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal...
Référencé le :
20-09-2016
|
|
Gilles Courtois - The Margulis lemma, old and new (Part 2)
[Ressource pédagogique]
Date de publication :
20160621 |
Auteur(s) :
COURTOIS Gilles |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal...
Référencé le :
20-09-2016
|
|
Gilles Courtois - The Margulis lemma, old and new (Part 1)
[Ressource pédagogique]
Date de publication :
20160620 |
Auteur(s) :
COURTOIS Gilles |
Editeur(s) :
Bastien Fanny |
Origine de la fiche :
Canal-u.fr
The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal...
Référencé le :
20-09-2016
|
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|