Version imprimable |
Intelligence artificielle pour la détection automatique de translocations chromosomiques : application à la dosimétrie biologique rétrospective basée sur l'imagerie FISH (Artificial Intelligence for the automatic detection of chromosomal translocations : application to retrospective dosimetry based on FISH imaging) | ||
Tallon, Quentin - (2025-01-16) / Université de Rennes - Intelligence artificielle pour la détection automatique de translocations chromosomiques : application à la dosimétrie biologique rétrospective basée sur l'imagerie FISH Langue : Anglais Directeur de thèse: Kervrann, Charles; Benadjaoud, Mohamedamine Laboratoire : INRIA-RENNES Ecole Doctorale : MATISSE Thématique : Sciences de l'ingénieur | ||
Mots-clés : Apprentissage profond, Imagerie biomédicale, Détection d'objets, Génération, Filtrage, Classification, Apprentissage profond, Imagerie médicale, Intelligence artificielle Résumé : L'évaluation précise de la dose est essentielle après une exposition aux rayonnements ionisants, en particulier pour la prise en charge des victimes asymptomatiques. Parmi les méthodes disponibles, la dosimétrie biologique s'appuie sur l'imagerie cytogénétique pour identifier les aberrations chromosomiques dans les lymphocytes. Les aberrations stables, détectables par imagerie par Fluorescence In Situ Hybridization (FISH), sont particulièrement utiles pour la dosimétrie rétrospective. Cette étude vise à automatiser la détection des aberrations stables à l'aide de techniques d'apprentissage profond. Nous avons développé une méthode basé sur des modèles de pointe pour la détection d'objets au niveau de la métaphase, ainsi que des modèles de convolution pour la classification au niveau des chromosomes après segmentation. Un défi majeur était la disponibilité limitée des données annotées et la rareté des translocations, que nous avons abordées par la génération de données synthétiques à l'aide de modèles de diffusion générative. Notre approche génère des chromosomes transloqués synthétiques à partir d'images non annotées, ce qui donne des résultats prometteurs pour la détection automatisée des aberrations et améliore l'efficacité de l'imagerie cytogénétique dans les applications de dosimétrie. Résumé (anglais) : Accurate dose assessment is essential following ionizing radiation exposure, particularly for managing asymptomatic victims. Among the methods available, biological dosimetry relies on cytogenetic imaging to identify chromosomal aberrations in lymphocytes. Stable aberrations, detectable via Fluorescence In Situ Hybridization (FISH) imaging, are especially useful for retrospective dosimetry. This study aims to automate the detection of stable aberrations using deep learning techniques. We developed a workflow based on state-of-the-art models for metaphase-level object detection, alongside convolution models for chromosome-level classification after segmentation. A major challenge was the limited availability of annotated data and the rarity of translocations, which we addressed through synthetic data generation using generative diffusion models. Our approach generates synthetic translocated chromosomes from unannotated images, yielding promising results for automated aberration detection, and enhancing the efficiency of cytogenetic imaging in dosimetry applications. Identifiant : rennes1-ori-wf-1-20713 |
Exporter au format XML |