Version imprimable |
Optical antennas for harvesting solar radiation energy (Antennes optiques pour la récupération de l'énergie du rayonnement solaire) | ||
Sethi, Waleed tariq - (2018-02-16) / Universite de Rennes 1 Optical antennas for harvesting solar radiation energy Langue : Anglais Directeur de thèse: Himdi, Mohammed Laboratoire : IETR Ecole Doctorale : MATHSTIC Thématique : Sciences de l'ingénieur | ||
Mots-clés : récupération d'énergie, nano-antennes, antenne optique, TeraHertz, spectre solaire, Infrarouge, Antennes miniatures, Nanotechnologie, Spectre solaire Résumé : Au cours des dernières années, la communauté scientifique s'est intéressée de plus en plus à l'acquisition de sources d'énergie renouvelables vertes et propres par rapport aux combustibles fossiles traditionnels. Le rayonnement solaire est une source particulièrement abondante d'énergie renouvelable qui a été largement utilisée dans les véhicules, les machines et les bâtiments, entre autres. Il y a généralement deux manières différentes d'utiliser l'énergie solaire: la chaleur et l'électricité. La principale motivation de ce travail de thèse est d'utiliser cette abondante source d'énergie pour produire une petite fraction de la tension et du courant continu de sortie. Puisque le spectre solaire se situe dans les longueurs d'onde à l'échelle nanométrique ou dans la bande térahertz, les antennes optiques seront utilisées comme une nouvelle technologie de nanotechnologie pour capter et récolter l'énergie solaire. Les antennes optiques ont des propriétés similaires à celles de leurs homologues micro-ondes, mais leur avantage réside dans des moyens sans précédent pour adapter les champs électromagnétiques dans tous leurs aspects et applications. Par conséquent, avec les détails mentionnés ci-dessus, l'idée principale de cette thèse est de capturer le rayonnement infrarouge solaire et l'utiliser pour produire une tension continue de sortie. La première partie de cette thèse est consacrée à la compréhension du fonctionnement de la collecte d'énergie par radiofréquence (RF) et à la présentation d'un concept de rectenna. La deuxième partie traite de l'introduction et de la simulation d'antennes optiques à base de résonateurs diélectriques (DR) car elles offrent moins de pertes à la bande THz. Deux conceptions de DR différentes sont proposées fonctionnant à la fréquence centrale de 193,5 THz (longueur d'onde 1550 nm). La troisième partie traite de la contribution principale à ce travail en termes de conception, simulation et fabrication d'une antenne optique Yagi-uda à haut gain et large bande. La technique de lithographie par faisceau d'électrons est utilisée pour réaliser la structure proposée. En dehors de la conception de l'élément unique Yagi-uda, diverses configurations de réseau ont été simulées avec la réalisation d'un réseau d'éléments 100 x 100 fabriqué sur un substrat de silicium. Pour produire une certaine quantité de tension de sortie, deux techniques ont été utilisées pour tester le réseau d'antennes optiques Yagi-uda. La première technique impliquait l'intégration du réseau Yagi-uda avec une diode fermionique du commerce qui produisait une tension de sortie de 0,15 V par excitation à partir d'une lumière visible et de 0,52 V par excitation directe à partir d'un laser à 1550 nm. La deuxième technique est basée sur la dissipation thermique entre des métaux dissemblables produisant une tension de sortie. Quatre lasers à longueurs d'onde différents (532 nm, 650 nm, 940 nm et 1550 nm) ont excité trois conceptions de nantenna réalisées. Parmi ces conceptions, la tension de sortie maximale de 0,82 V a été produite par le réseau Yagi-uda lorsqu'il est excité via un laser de 1550 nm. Résumé (anglais) : Recent years have witnessed an increased interest by the scientific community to acquire green and clean renewable sources of energy compared to traditional fossil fuels. Solar radiation is one particular abundant source of renewable energy that has been widely applied in vehicles, machines, and buildings, among others. There are generally two different ways in which solar energy is used – heat and electricity. The main motivation of this thesis work is to utilize that abundant source of energy in producing a small fraction of output DC voltage and current. Since the solar spectrum lies in the nano scale wavelengths or terahertz band, optical antennas as a novel nano fabrication technology will be used to capture and harvest the solar energy. Optical antennas have properties similar to their microwave counterparts, but the advantage they have is in terms of unprecedented means to tailor electromagnetic fields in all its aspects and applications. Therefore, with the aforementioned details, the main idea of this thesis is to capture the solar infrared radiation and utilize it for producing output DC voltage. The first part of this thesis is dedicated to understanding the working of radio frequency (RF) energy harvesting and presenting a rectenna design. The second part deals with the introduction and simulation of optical antennas based of dielectric resonators (DR) as they offer fewer losses at the THz band. Two different DR designs are proposed working at the center frequency of 193.5 THz (1550 nm wavelength). The third part discusses the main contribution to this work in terms of design, simulation and fabrication of a high gain and wideband Yagi-uda optical antenna. E-beam lithography technique is used to realize the proposed structure. Apart for the single element Yagi-uda design, various array configurations have been simulated with realization of a 100 x 100 elements array fabricated on a silicon substrate. To produce a certain amount of output voltage, two techniques were deployed in testing the realized Yagi-uda optical antenna array. The first technique involved integration of the Yagi-uda array with a commercial fermionic diode that produced output voltage of 0.15 V via excitation from a visible light and 0.52 V with direct excitation from a 1550 nm laser. The second technique is based on thermal dissipation among dissimilar metals producing an output voltage. Four different wavelength (532 nm, 650 nm, 940 nm and 1550 nm) lasers excited three realized nantenna designs. Among these designs, the maximum output voltage of 0.82 V was produced by the Yagi-uda array when excited via 1550 nm laser. Identifiant : rennes1-ori-wf-1-10667 |
Exporter au format XML |