Version imprimable

Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 5)




Auteur(s) : LUO FENG    24-06-2016 
Éditeur(s) : Fanny Bastien;    

Description : The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics. - The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof - Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan - Finite dimensional variational principles associated to polyhedral surfaces - A discrete conformal equivalence of polyhedral surfaces and its relationship to convex polyhedra in hyperbolic 3-space - A discrete uniformization theorem for compact polyhedral surfaces - Convergence of discrete conformality and some open problems


Mots-clés libres : Grenoble, conformal geometry, UGA, insitut fourier, topology, metric geometry, geometric analysis, summer school, CNRS, polyhedral surfaces
Classification générale : Mathématiques

Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/feng_...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/fe...
Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

DONNEES PEDAGOGIQUES

Type pédagogique : cours / présentation
Niveau : doctorat

DONNEES TECHNIQUES

Format : video/x-flv
Taille : 3.03 Go
Durée d'exécution : 1 heure 25 minutes 8 secondes

Exporter au format XML