Version imprimable |
![]() |
Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 2) | |
Auteur(s) : LUO FENG
22-06-2016
Éditeur(s) : Fanny Bastien; Description : The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics. - The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof - Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan - Finite dimensional variational principles associated to polyhedral surfaces - A discrete conformal equivalence of polyhedral surfaces and its relationship to convex polyhedra in hyperbolic 3-space - A discrete uniformization theorem for compact polyhedral surfaces - Convergence of discrete conformality and some open problems Mots-clés libres : Grenoble, conformal geometry, UGA, insitut fourier, topology, metric geometry, geometric analysis, summer school, CNRS, polyhedral surfaces Classification générale : Mathématiques Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/feng_... rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/fe... Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 | DONNEES PEDAGOGIQUES Type pédagogique : cours / présentation Niveau : doctorat DONNEES TECHNIQUES Format : video/x-flv Taille : 3.09 Go Durée d'exécution : 1 heure 26 minutes 53 secondes |
Exporter au format XML |