Version imprimable

Gilles Courtois - The Margulis lemma, old and new (Part 3)




Auteur(s) : COURTOIS GILLES    21-06-2016 
Éditeur(s) : Fanny Bastien;    

Description : The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal of these lectures is to present the recent work of  V. Kapovitch and B. Wilking who gave a sharp version of the Margulis lemma under the assumption that the Ricci curvature is bounded below. Their method uses the structure of « Ricci limit spaces » explained by T. Richard during his lectures.


Mots-clés libres : Grenoble, CNRS, institut fourier, summer school, geometric analysis, metric geometry, topology, UGA, Margulis lemma
Classification générale : Mathématiques

Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/gille...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/gi...
Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

DONNEES PEDAGOGIQUES

Type pédagogique : cours / présentation
Niveau : doctorat

DONNEES TECHNIQUES

Format : video/x-flv
Taille : 3.11 Go
Durée d'exécution : 1 heure 27 minutes 21 secondes

Exporter au format XML