Version imprimable

Sa'ar Hersonsky - Electrical Networks and Stephenson's Conjecture




Auteur(s) : HERSONSKY SA'AR    27-06-2016 
Éditeur(s) : Fanny Bastien;    

Description : The Riemann Mapping Theorem asserts that any simply connected planar domain which is not the whole of it, can be mapped by a conformal homeomorphism onto the open unit disk. After normalization, this map is unique and is called the Riemann mapping. In the 90's, Ken Stephenson, motivated by a circle packing approximation scheme suggested by Thurston (and first proved to converge by Rodin-Sullivan), predicted that the Riemann Mapping may be approximated by a different scheme, i.e., by a sequence of finite networks endowed with particular choices of conductance constants. These networks are naturally defined in terms of the contact graph of any circle packing. We will affirm Stephenson's Conjecture in a greater generality.


Mots-clés libres : Grenoble, electrical networks, UGA, topology, metric geometry, geometric analysis, summer school, institut fourier, CNRS, Stephenson's conjecture
Classification générale : Mathématiques

Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/sa_ar...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/sa...
Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0

DONNEES PEDAGOGIQUES

Type pédagogique : cours / présentation
Niveau : doctorat

DONNEES TECHNIQUES

Format : video/x-flv
Taille : 1.79 Go
Durée d'exécution : 50 minutes 14 secondes

Exporter au format XML