Version imprimable |
![]() |
Robert Young - Quantitative rectifiability and differentiation in the Heisenberg group | |
Auteur(s) : YOUNG ROBERT
01-07-2016
Éditeur(s) : Fanny Bastien; Description : (joint work with Assaf Naor) The Heisenberg group $mathbb{H}$ is a sub-Riemannian manifold that is unusually difficult to embed in $mathbb{R}^n$. Cheeger and Kleiner introduced a new notion of differentiation that they used to show that it does not embed nicely into $L_1$. This notion is based on surfaces in $mathbb{H}$, and in this talk, we will describe new techniques that let us quantify the "roughness" of such surfaces, find sharp bounds on the distortion of embeddings of $mathbb{H}$, and estimate the accuracy of an approximate algorithm for the Sparsest Cut Problem. Mots-clés libres : Grenoble, CNRS, institut fourier, summer school, geometric analysis, metric geometry, topology, UGA, Heisenberg group Classification générale : Mathématiques Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/rober... rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/ro... Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 | DONNEES PEDAGOGIQUES Type pédagogique : cours / présentation Niveau : doctorat DONNEES TECHNIQUES Format : video/x-flv Taille : 1.97 Go Durée d'exécution : 55 minutes 16 secondes |
Exporter au format XML |