Version imprimable |
![]() |
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2) | |
Auteur(s) : TONEGAWA YOSHIHIRO
16-06-2015
Éditeur(s) : Fanny Bastien; Description : The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and the Allen-Cahn equation. Their singular perturbation problems are related to objects such as minimal surfaces and mean curvature flows in the framework of GMT. Mots-clés libres : Mathèmatiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation Classification générale : Mathématiques Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/yoshi... rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/yo... Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 | DONNEES PEDAGOGIQUES Type pédagogique : cours / présentation Niveau : doctorat DONNEES TECHNIQUES Format : video/x-flv Taille : 3.27 Go Durée d'exécution : 1 heure 30 minutes 6 secondes |
Exporter au format XML |