Version imprimable |
![]() |
François Hamel: Fronts de transition bistables dans R^N | |
Auteur(s) : HAMEL FRANÇOIS
12-11-2013
Éditeur(s) : Direction de l'audiovisuel de l'EHESS (Dir. Jean-Claude Penrad) ; Philippe KERGRAISSE; Description : Journées ERC ReaDi 12-13 novembre 2013 ERC ReaDi meeting, 12-13th november, 2013 François Hamel (LATP, Aix-Marseille)Fronts de transition bistables dans R^NLes notions classiques d'ondes ou de fronts de réeaction-diffusion peuvent être vues comme des exemples d'ondes de transition généralisées. Ces dernières notions, introduites par H. Berestycki et F. Hamel, font appel à des limites uniformes, au sens de la distance géodésique dans le domaine considéré, par rapport à une famille d'hypersurfaces paramétrées par le temps. L'existence d'ondes de transition a été prouvée dans différents contextes pour lesquels les notions usuelles d'ondes n'ont plus de sens. Même pour des équations homogènes dans R^N des fronts avec des formes non planes ont été construits. Dans ces exposés, je parlerai également des propriétés qualitatives de fronts de transition bistables dans R^N, et en particulier de l'unicité de leur vitesse globale moyenne, indépendamment de leur forme. Je discuterai par ailleurs de l'existence de fronts de transition qui ne sont pas des fronts classiques dans R^N. Bistable transition fronts in R^N The standard notions of reaction-diffusion waves or fronts can be viewed as examples of generalized transition waves. These notions, introduced by H. Berestycki and F. Hamel, involve uniform limits, with respect to the geodesic distance, to a family of hypersurfaces which are parametrized by time. The existence of transition waves has been proved in various contexts where the standard notions of waves make no longer sense. Even for homogeneous equations in R^N, fronts with various non-planar shapes are known to exist. In these talks, I will also report on some qualitative properties of bistable transition fronts in RN and in particular on the uniqueness of their global mean speed, regardless of their shape. I will also mention the existence of transition fronts in R^N which are not standard traveling fronts. Mots-clés libres : combinatoire, Informatique, Probabilité, EHESS Classification générale : Mathématiques Accès à la ressource : http://www.canal-u.tv/video/ehess/francois_hamel_f... rtmp://fms2.cerimes.fr:80/vod/ehess/fran.ois.hamel... Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs© Direction de l'Audiovisuel / EHESS / 2013 | DONNEES PEDAGOGIQUES Type pédagogique : cours / présentation DONNEES TECHNIQUES Format : video/x-flv Taille : 261.71 Mo Durée d'exécution : 55 minutes 26 secondes |
Exporter au format XML |