Retour aux résultats de la recherche | Version imprimable |
![]() |
Application linéaire et sous-espaces vectoriels | |
Auteur(s) : Groupe Universitaire d'Innovation Pédagogique en Mathématiques
1998-09-01
Éditeur(s) : Ulysse, Ingénierie Multimédia de Formations; Description : Une fois la notion d'application linéaire définie, se pose la question de savoir quelles sont les structures des images directes et réciproques des sous-espaces vectoriels par une application linéaire. En particulier, deux ensembles apparaissent naturellement et sont intéressants : * l'ensemble des images de tous les éléments de l'espace de départ, * l'ensemble de tous les éléments dont l'image est le vecteur nul. Ces deux ensembles permettent en effet de caractériser les applications linéaires injectives et surjectives. Mots-clés libres : Espace vectoriel, Vecteur, Application linéaire, Sous-espace vectoriel, Application linéaire injective, Application linéaire surjective Accès à la ressource : http://www.uel.education.fr/consultation/reference... Version : A1.0 (1999) Etat d'achèvement : final Conditions d'utilisation : Voir la licence contact: info@cerimes.fr | DONNEES PEDAGOGIQUES Type pédagogique : lecture, questionnaire Granularité : 2 Niveau : higher education Public cible : learner Langue de l'apprenant : fre Proposition d'utilisation : Il vous est conseillé de prendre des notes manuscrites pour bien assimiler les notions introduites et de faire vous-mêmes les exemples en guise de premier entraînement. Ce premier travail effectué, il est vivement conseillé de travailler sur les exercices guidés qui font l'objet d'une autre ressource, de manière à tester l'assimilation des notions et à acquérir des modèles reproductibles. Difficulté : medium Durée d'apprentissage : PT01H00M Age attendu du l'utilisateur : 18+ Type d'interactivité de l'activité pédagogique : expositive Niveau d'interactivité du document : medium Pré-requis : Pour aborder ce module il est nécessaire de maitriser les notions suivantes: La théorie des ensembles, en particulier les notions d'application injective, surjective, image directe et image réciproque d'un sous-ensemble par une application. Les notions d'espace vectoriel et de sous-espace vectoriel. La définition et les premières propriétés d'une application linéaire. Les exemples usuels d'espaces vectoriels. DONNEES TECHNIQUES Date de publication : 2007-01-28 Format : text/html, image/gif Taille : 694 Durée d'exécution : PT1H Navigateur web : any Exigences techniques : Affichage minimal conseillé : 800x600 en milliers de couleurs |
Exporter au format XML |