Algorithmes et généricité dans les groupes de tresses (Algorithms and genericity in the braid groups) | ||
Caruso, Sandrine - (2013-10-22) / Université de Rennes 1, Université européenne de Bretagne - Algorithmes et généricité dans les groupes de tresses Langue : Français Directeur de thèse: Wiest, Bert Ecole Doctorale : Mathématiques, informatique, signal, électronique et télécommunications Thématique : Mathématiques | ||
Mots-clés : théorie des tresses, théorie des groupes, algorithmes, géométrie des surfaces, Tresses, Théorie des, Groupes, Théorie des, Algorithmes, Surfaces (mathématiques) Résumé : La théorie des groupes de tresses s'inscrit au croisement de plusieurs domaines des mathématiques, en particulier, l'algèbre et la géométrie. La recherche actuelle s'étend dans chacune de ces directions, et de riches développements naissent du mariage de ces deux aspects. D'un point de vue géométrique, le groupe des tresses à n brins est vu comme le groupe modulaire d'un disque à n trous, avec composante de bord. On peut représenter une tresse par un diagramme de courbes, c'est-à-dire l'image d'une famille fixée d'arcs sur le disque, par l'élément correspondant du groupe modulaire. Dans cette thèse est présenté l'algorithme de relaxations par la droite, qui permet de retrouver, étant donné un diagramme de courbes, la tresse à partir de laquelle il a été obtenu. Cet algorithme aide à faire le lien entre des propriétés géométriques du diagramme de courbes, et des propriétés algébriques du mot de tresse, en permettant de repérer de grandes puissances d'un générateur sous forme de spirales dans le diagramme de courbes. D'un point de vue algébrique, le groupe de tresses est l'exemple classique de groupe de Garside. L'un des objectifs actuels des recherches en théorie de Garside est d'obtenir un algorithme de résolution en temps polynomial du problème de conjugaison dans les groupes de tresses. À cette fin, on cherche à exploiter les propriétés de certains ensembles finis de conjugués d'une tresse, qui sont des invariants de conjugaison. L'un des résultats de cette thèse concerne la taille d'un de ces invariants, l'ensemble super-sommital : on exhibe une famille de tresses pseudo-anosoviennes dont l'ensemble super-sommital est de taille exponentielle. González-Meneses avait déjà établi le résultat similaire pour une famille de tresses réductibles. La conséquence de ces résultats est qu'on ne peut pas espérer résoudre le problème de conjugaison en temps polynomial au moyen de cet ensemble, et qu'il vaut mieux chercher à exploiter des invariants plus petits. Dans le cas des tresses pseudo-anosoviennes, des espoirs résident actuellement en l'ensemble des circuits glissants. Dans cette thèse, un algorithme en temps polynomial s'appuyant sur ce dernier ensemble résout génériquement le problème de conjugaison, c'est-à-dire qu'il le résout pour une proportion de tresses tendant exponentiellement vite vers 1 lorsque la longueur de la tresse tend vers l'infini. On montre également que, dans une boule du graphe de Cayley avec pour générateurs les tresses simples, une tresse générique est pseudo-anosovienne, ce qui était une conjecture bien connue des spécialistes de la théorie de Garside. Résumé (anglais) : The theory of braid groups is at the intersection of several areas of mathematics, especially algebra and geometry. The current research extends in each of these directions, leading to rich developments. From a geometrical point of view, the braid group on n strands is seen as the mapping class group of a disc with n punctures, with boundary component. A braid can be represented by a curve diagram, that is to say, the image of a family of arcs attached to the disc, by the corresponding mapping class. In this thesis we present the algorithm of relaxations from the right, which, given a curve diagram, determines the braid from which it was obtained. This algorithm helps us to make the link between geometric properties of the curve diagram and algebraic properties of the braid word, allowing us to identify great powers of a generator as spirals in the curve diagram. From an algebraic point of view, the braid group is the classical example of a Garside group. One of the objectives of current research in Garside theory is to obtain a polynomial time algorithm to solve the conjugacy problem in braid groups. For this, a possibility is to exploit the properties of some finite sets of conjugates of a braid, which are invariants of the conjugacy classes. One of the results of this thesis concerns the size of one of these invariants, the super summit set: we construct a family of pseudo-Anosov braids whose super summit set has exponential size. González- Meneses had already established the similar result for a family of reducible braids. These results implies that we cannot hope to solve the conjugacy problem in polynomial time through this set, and it is better to try to use smaller invariants. In the case of pseudo-Anosov braids, one may hope that the so-called sliding circuit set is more useful. In this thesis, we present a polynomial time algorithm based on this last set which generically solves the conjugacy problem, that is to say, it solves it for a proportion of braids that tends exponentially fast to 1 as the length of the braid tends to infinity. We also show that, in a ball of the Cayley graph with generators the simple braids, a braid is generically pseudo-Anosov, which was a well-known conjecture for the specialists in Garside theory. Identifiant : rennes1-ori-wf-1-5761 |
Exporter au format XML |