Impact and limits of backdoor attacks on deep learning systems : insights from face recognition
(Impact et limites des attaques par portes dérobées sur les systèmes d’apprentissage profond : enseignements tirés de la reconnaissance faciale)

Le Roux, Quentin - (2025-11-19) / Université de Rennes
Impact and limits of backdoor attacks on deep learning systems : insights from face recognition

Langue : Anglais
Directeur de thèse:  Furon, Teddy
Laboratoire :  IRISA
Ecole Doctorale : MATISSE

Thématique : Informatique
Accès à la ressource : https://ged.univ-rennes1.fr/nuxeo/site/esupversion...

Mots-clés : réseaux de neurones profonds, sécurité, attaques par portes dérobées, défenses, intégrité des réseaux de neurones, reconnaissance faciale, apprentissage automatique, Réseaux neuronaux (informatique), =Apprentissage profond, Systèmes informatiques -- Mesures de sûreté

Résumé : Cette thèse étudie les attaques par portes dérobées sur les systèmes d’apprentissage profond, prenant la reconnaissance faciale comme exemple. Contrairement à une grande partie de la littérature, qui se concentre sur l'étude de réseaux de neurones profonds de classification isolés, ce travail évalue des pipelines réalistes dans leur globalité. La thèse débute par une revue de la littérature des attaques par portes dérobées, leurs défenses, et de la reconnaissance faciale, mettant en avant plusieurs angles morts. Cette thèse démontre alors des nouvelles attaques par portes dérobées sur des modèles présents dans l'industrie, contribuant à la compréhension holistique de ces menaces. Le résultat central de cette thèse est inquiétant : compromettre n'importe quel composant d'un pipeline suffit à le saboter, permettant un accès non autorisé dans un système biométrique. Ce travail propose alors plusieurs contremesures et recommandations pour se prémunir contre de futures attaques. En ancrant cette recherche dans un contexte de systèmes réalistes, cette thèse met en avant un problème de vulnérabilité qui affecte un large éventail d’applications qui vont au-delà de la reconnaissance faciale.

Résumé (anglais) : This thesis investigates the impact of backdoor attacks on fully-fledged Deep Learning systems, using Face Recognition as a representative case study. In contrast with most existing works that focus on isolated Deep Neural Network classifiers, this research evaluates the integrity of realistic and complete Artificial Intelligence pipelines. It begins with a comprehensive survey at the intersection of backdoor attacks, their defenses, and face recognition, highlighting a series of unexplored vulnerabilities. The thesis then introduces novel backdoor attacks on models found in the industry, contributing to the understanding of these threats and their consequences on a holistic level. This thesis' central finding is concerning: compromising a single module with a backdoor can be enough to subvert an entire Face Recognition System, enabling unauthorized access in realistic, industry settings. Finally, the thesis proposes practical defenses and dedicated guidelines to enhance the resilience of such systems. By setting itself in the context of realistic systems, this thesis thus highlights the vulnerability issue of a broader set of AI pipelines that extends beyond face recognition.

Identifiant : rennes1-ori-wf-1-21647
Exporter au format XML