Control of the mechanical and optical properties of SiNx-based films for optical and strain engineering applications (Contrôle des propriétés mécaniques et optiques des couches à base de SiNx pour des applications en optique et en ingénierie des contraintes) | ||
Ahammou, Brahim - (2023-01-24) / Université de Rennes, McMaster university (Hamilton, Canada) Control of the mechanical and optical properties of SiNx-based films for optical and strain engineering applications Langue : Anglais Directeur de thèse: Landesman, Jean-Pierre; Levallois, Christophe; Mascher, Peter Laboratoire : FOTON Ecole Doctorale : MATISSE Thématique : Sciences de l'ingénieur | ||
Mots-clés : Nitrure de silicium, Oxynitrure de silicium, Dépôt plasma, Résonance cyclotronique électronique (ECR), Ingénierie des contraintes, degré de polarisation de la photoluminescence (DOP PL), Nitrure de silicium, Oxynitrures de silicium, Silicium -- Couches minces, Silicium -- Couches minces Résumé : Les couches minces à base de nitrure de silicium (SiNx) ont été reconnus comme des diélectriques essentiels dans l'industrie microélectronique et optoélectronique en raison de leurs propriétés intéressantes. Dans cette thèse, nous décrivons comment contrôler l'indice optique et les propriétés mécaniques des couches de SiNx et d'oxynitrure de silicium (SiOyNx) en ajustant les paramètres du processus de dépôt. Nous utilisons deux types de réacteurs de dépôt chimique en phase vapeur assisté par plasma : un réacteur standard à couplage capacitif avec excitation radiofréquence et un réacteur à résonance cyclotron électronique avec excitation micro-onde. Nous discutons de la fabrication et de la caractérisation des structures multicouches comme application optique de nos couches minces. Nous focalisons sur la caractérisation et la compréhension des propriétés optiques de ces couches minces grâce à l’ellipsométrie spectroscopique. Nous étudions également expérimentalement leurs propriétés mécaniques en utilisant la technique de mesure de la courbure des substrats, la fabrication de microstructures et les mesures de nanoindentation. Enfin, nous montrons des mesures précises de la distribution des contraintes induites dans le GaAs lorsque de tels couches minces sont structurés sous forme de rubans allongées de largeur variable, en utilisant la lithographie optique et la gravure au plasma. Pour cela, nous cartographions la déformation anisotrope, en mesurant le degré de polarisation de la photoluminescence (PL) à intégration spectrale générée au sein du GaAs par excitation avec un laser rouge. La PL des semi-conducteurs cubiques massifs tels que le GaAs n'est pas polarisé, tandis que sous une contrainte anisotrope un certain degré de polarisation est produit. Ces cartographies ont été mesurées soit à partir de la surface du semi-conducteur, soit à partir de sections transversales clivées. Ils fournissent une image détaillée et complète de la déformation cristalline au voisinage de la couche contrainte structurée. Ensuite, nous avons effectué des simulations par éléments finis en essayant de reproduire les cartographies expérimentales. Nous pensons que notre schéma de simulation est utile pour la conception des composants photoniques, par exemple pour prédire les changements locaux de l'indice de réfraction dus à l'effet photoélastique. Résumé (anglais) : Due to their attractive properties, silicon nitride (SiNx) based films have been recognized as essential dielectric films in the microelectronic and optoelectronic industries. In this PhD thesis, we describe how we can control the refractive index and the mechanical properties of SiNx and silicon oxynitride (SiOyNx) films by tuning the deposition process parameters. We use two different plasma-enhanced chemical vapor deposition reactors: a standard capacitively coupled reactor with radiofrequency excitation and an electron cyclotron resonance reactor with microwave excitation. We discuss the fabrication and characterization of multilayer structures as an optical application of our thin films. We focus on characterizing and understanding these thin films’ optical properties through spectroscopic ellipsometry. We also study their mechanical properties experimentally using the wafer curvature measurement technique, microstructure fabrication, and nanoindentation measurements. Finally, we show accurate measurements of the strain distribution induced within GaAs wafers when such thin films are structured in the shape of elongated stripes of variable width, using standard optical lithography and plasma etching. For this, we map the anisotropic deformation, measuring the degree of polarization of the spectrally integrated photoluminescence (PL) generated within GaAs by excitation with a red laser. PL from bulk cubic semiconductors such as GaAs is unpolarized, whereas anisotropic strain produces some degree of polarization. These maps were measured either from the semiconductor surface or from cleaved cross-sections. They provide a detailed and complete image of the crystal deformation in the vicinity of the structured stressor film. Then, we performed some finite element simulations trying to reproduce the experimental maps. We believe our simulation scheme is helpful for designing the photonic components, e.g., to predict the local changes in the refractive index due to the photoelastic effect. Identifiant : rennes1-ori-wf-1-17685 |
Exporter au format XML |