![]() |
Greg McShane - Volumes of hyperbolics manifolds and translation distances | |
Description : Schlenker and Krasnov have established a remarkable Schlaffli-type formula for the (renormalized) volume of a quasi-Fuchsian manifold. Using this, some classical results in complex analysis and Gromov-Hausdorff convergence for sequences of open 3-manifolds due to Brock-Bromberg one obtains explicit upper bounds for the volume of a mapping torus in terms of the translation distance of the monodromy on Teichmueller space. We will explain Brock-Bromberg's approach to the Thurston's uniformization theorem for hyperbolic manifolds which are mapping tori. In particular the "coarse geometry" of the convex core of a quasi fuchsian manifold. Mots-clés libres : Grenoble, CNRS, institut fourier, summer school, metric geometry, topology, UGA, geometric analysis, hyperbolics manifolds Classification générale : Mathématiques Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/greg_... rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/gr... Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC_ND 4.0 | DONNEES PEDAGOGIQUES Type pédagogique : cours / présentation Niveau : doctorat DONNEES TECHNIQUES Format : video/x-flv Taille : 2.14 Go Durée d'exécution : 1 heure 5 secondes |
Exporter au format XML |