Greg McShane - Volumes of hyperbolics manifolds and translation distances





Description : Schlenker and Krasnov have established a remarkable Schlaffli-type formula for the (renormalized) volume of a quasi-Fuchsian manifold. Using this, some classical results in complex analysis and Gromov-Hausdorff  convergence for sequences of open 3-manifolds due to Brock-Bromberg one obtains explicit upper bounds for the volume of a mapping torus in terms of the translation distance of the monodromy on Teichmueller space. We will explain Brock-Bromberg's approach to the Thurston's uniformization theorem for hyperbolic manifolds which are mapping tori. In particular the "coarse geometry" of the convex core of a quasi fuchsian manifold.


Mots-clés libres : Grenoble, CNRS, institut fourier, summer school, metric geometry, topology, UGA, geometric analysis, hyperbolics manifolds
Classification générale : Mathématiques

Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/greg_...
rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/gr...
Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC_ND 4.0

DONNEES PEDAGOGIQUES

Type pédagogique : cours / présentation
Niveau : doctorat

DONNEES TECHNIQUES

Format : video/x-flv
Taille : 2.14 Go
Durée d'exécution : 1 heure 5 secondes

Exporter au format XML