![]() |
Sa'ar Hersonsky - Electrical Networks and Stephenson's Conjecture | |
Auteur(s) : HERSONSKY SA'AR
27-06-2016
Éditeur(s) : Fanny Bastien; Description : The Riemann Mapping Theorem asserts that any simply connected planar domain which is not the whole of it, can be mapped by a conformal homeomorphism onto the open unit disk. After normalization, this map is unique and is called the Riemann mapping. In the 90's, Ken Stephenson, motivated by a circle packing approximation scheme suggested by Thurston (and first proved to converge by Rodin-Sullivan), predicted that the Riemann Mapping may be approximated by a different scheme, i.e., by a sequence of finite networks endowed with particular choices of conductance constants. These networks are naturally defined in terms of the contact graph of any circle packing. We will affirm Stephenson's Conjecture in a greater generality. Mots-clés libres : Grenoble, electrical networks, UGA, topology, metric geometry, geometric analysis, summer school, institut fourier, CNRS, Stephenson's conjecture Classification générale : Mathématiques Accès à la ressource : http://www.canal-u.tv/video/institut_fourier/sa_ar... rtmpt://fms2.cerimes.fr:80/vod/institut_fourier/sa... Conditions d'utilisation : Droits réservés à l'éditeur et aux auteurs. CC BY-NC-ND 4.0 | DONNEES PEDAGOGIQUES Type pédagogique : cours / présentation Niveau : doctorat DONNEES TECHNIQUES Format : video/x-flv Taille : 1.79 Go Durée d'exécution : 50 minutes 14 secondes |
Exporter au format XML |